快乐赛车

[1]黄科宇,汪 可,李金忠,等.变压器油对老化硅橡胶憎水迁移特性的影响[J].高压电器,2020,56(02):114-121.[doi:10.13296/j.1001-1609.hva.2020.02.017 ]
 HUANG Keyu,WANG Ke,LI Jinzhong,et al.Effect of Transformer Oil on Hydrophobicity Transfer Characteristic of Aged Silicone Rubber[J].High Voltage Apparatus,2020,56(02):114-121.[doi:10.13296/j.1001-1609.hva.2020.02.017 ]
点击复制

变压器油对老化硅橡胶憎水迁移特性的影响()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年02期
页码:
114-121
栏目:
研究与分析
出版日期:
2020-02-14

文章信息/Info

Title:
Effect of Transformer Oil on Hydrophobicity Transfer Characteristic of Aged Silicone Rubber
作者:
黄科宇12 汪 可3 李金忠3 杨 雁1 张书琦3 刘琛浩1 高 波1
(1. 西南交通大学电气工程学院, 成都 610031; 2. 国网四川省电力公司德阳供电公司, 四川 德阳 618000; 3. 中国电力科学研究院, 北京 100192)
Author(s):
HUANG Keyu12 WANG Ke3 LI Jinzhong3 YANG Yan1 ZHANG Shuqi3 LIU Chenhao1 GAO Bo1
(1. College of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2. State Grid Deyang Electric Power Company, Sichuan Deyang 618000, China; 3. China Electric Power Research Institute, Beijing 100192, China)
关键词:
高温硫化硅橡胶 加速热老化变压器油 人工污秽 憎水迁移特性
Keywords:
HTV silicone rubber accelerated thermal aging transformer oil artificial pollution hydrophobicity transfer characteristic
DOI:
摘要:
硅橡胶材料特有的憎水迁移性是复合电力设备能够防治污闪事故的重要原因,而油的存在会加重污秽积累。为此,文中高温硫化硅橡胶(HTV)料为研究对象,通过加速热老化得到老化试样,利用人工涂污研究老化对HTV憎水迁移特性的影响,并结合扫描电镜和红外光谱分析其影响机理;对浸油处理后的HTV试样进行人工涂污,分析浸油量和表面油污对HTV试样憎水迁移特性的影响。结果表明:热老化使HTV表面出现孔洞和沟壑,内部疏松,破坏了HTV主链Si-O键及侧链的甲基,影响了小分子的迁移通道,稳态憎水性能变差;浸油后,小分子迁移速变慢,随着吸油率增大,污秽表面的憎水恢复时间th先减小后增大,5号试样浸油50 h后稳态憎水角下降至76°;表面油污的存在阻碍了小分子的迁移,使得硅橡胶憎水迁移性基本丧失,5号老化试样表面稳态憎水性下降至69°。上述结果显示,变压器油严重阻碍了硅橡胶的憎水迁移性能,亟需研制耐油型复合硅橡胶。
Abstract:
Hydrophobicity transfer characteristic of silicone rubber is very important for protecting electrical equipment from pollution flashover accidents, however the presence of oil will aggravate the accumulation of pollution. In this paper, the aged HTV silicone rubber samples were obtained by accelerated thermal aging process, and the effect of the aging on the hydrophobicity transfer characteristic of HTV silicone rubber was investigated via artificial coating. Scanning electron microscopy(SEM)and infrared spectrometer(FTIR)were adopted to analyze the influencing mechanism. The effects of oil absorption and surface oil contamination on the hydrophobicity transfer characteristic of the silicone rubber were analyzed by artificial coating. The results show that: 1) after aging, holes and gullies appeared on the silicone rubber surface, and the interior structure became loose; 2) the Si-O bonds on silicone rubber’s main chains and the methyl groups on side chains were broken, which influenced transfer path of the LMW molecules, and lowered steady-state hydrophobic performance; 3) after oil immersion, the migration speed of the LMW molecules slowed down, the hydrophobicity recovery time of the oil-polluted surface decreased first and then increased with the increase in the oil adsorption, and the steady-state hydrophobic angle of the No.5 sample reduced to 76°after immersion in oil for 50 h; and 4) the oil contamination on the surface hindered the migration of the LMW molecules,which almost made the silicone rubber completely lose its hydrophobicity transfer characteristic, and the steady-state hydrophobic angle of the No.5 sample decreased to 69°. It is concluded that surface oil contamination seriously affects the hydrophobicity transfer characteristic of HTV silicone rubber, so it is extremely necessary to develop oil-resistant HTV silicone rubber.

参考文献/References:

[1] 张学成,檀金华,牛万宇,等. ±1 100 kV直流输电工程换流变压器阀侧套管的设计[J]. 高电压技术,2012,38(2):393-399. ZHANG Xuecheng,TAN Jinhua,NIU Wanyu,et al. Bushings design of converter transformer’s valve side of uhvdc transmission project[J]. High Voltage Engineering,2012,38(2):393-399.
[2] 张成涛. 发电一次主要设备检修方法与分析[D]. 北京: 华北电力大学,2010:1-3. ZHANG Chengtao. The maintenance method and analysis of mail primary equipment in power plant[D]. Beijing:North China Electric Power University,2010: 1-3.
[3] 邱太洪,李国伟,罗容波,等. 带电检测技术在变压器套管故障诊断中的应用[J]. 高压电器,2015,51(9):159-163. QIU Taihong,LI Guowei,LUO Rongbo,et al. Application of on-line detection technology in the fault diagnosis of transformer bushing[J]. High Voltage Apparatus,2015,51(9):159-163.
[4] GAO Y,WANG J,YAN Z,et al. Investigation on water diffusion property into HTV silicone rubber[J]. Proceedings of the Chinese Society of Electrical Engineering,2015,35(1):231-239.
[5] 王 康. 硅橡胶等离子体及电晕老化性能研究[D]. 武汉:武汉大学,2015:12-16. WANG Kang. Plasma & corona aging properties of silicone rubber for composite insulator[D]. Wuhan:Wuhan University,2015:12-16.
[6] 梁 英. 高温硫化(HTV)硅橡胶电晕老化特性及机理的研究[D]. 保定:华北电力大学,2008:2-9. LIANG Ying. Study on the corona aging characteristics and mechanism of HTV silicone rubber[D]. Baoding:North China Electric Power University,2008:2-9.
[7] GOGA N O,DEMCO D E,KOLZ J,et al. Surface UV aging of elastomers investigated with microscopic resolution by single-sided NMR[J]. Journal of Magnetic Resonance,2008,192(1):1-7.
[8] 周远翔,张云霄,张 旭,等. 热老化时间对硅橡胶电树枝起始特性的影响[J]. 高电压技术,2014,40(4):979-986. ZHOU Yuanxiang,ZHANG Yunxiao,ZHANG Xu,et al. Influence of thermal aging time on electrical tree initiation of silicone rubber[J]. High Voltage Engineering,2014,40(4):979-986.
[9] ZIRAKI S,ZEBARJAD S M,HADIANFARD M J. A study on the tensile properties of silicone rubber/polypropylene fibers/silica hybrid nanocomposites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016(57):289-296.
[10] JIA Zhidong,GAO Haifeng,GUAN Zhicheng,et al. Study on hydrophobicity transfer of RTV coatings based on a modification of absorption and cohesion theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(6):1317-1324.
[11] 刘 洋,周志成,魏 旭,等. 不同环境因素对硅橡胶憎水性及憎水迁移性的影响[J]. 高电压技术,2010,36(10):2454-2459. LIU Yang,ZHOU Zhicheng,WEI Xu,et al. Effect of environment factor on hydrophobicity and transfer of hydrophobicity of silicone rubber[J]. High Voltage Engineering,2010,36(10):2454-2459.
[12] 蒋兴良,李名加,司马文霞,等. 污湿环境中合成绝缘子憎水性影响因素分析[J]. 高电压技术,2002,28(9):5-6. JIANG Xingliang,LI Mingjia,SIMA Wenxia,et al. Analysis of factors effecting the hydrophobicity of composite insulator in contamination and humid conditions[J]. High Voltage Engineering,2002,28(9):5-6.
[13] 戴罕奇,梅红伟,王希林,等. HTV硅橡胶用不同高岭土染污后的憎水迁移特性对比[J]. 高电压技术,2014,40(4):1030-1037. DAI Hanqi,MEI Hongwei,WANG Xilin,et al. Hydrophobicity transfer feature comparison for HTV silicone rubber polluted by different kaolin[J]. High Voltage Engineering,2014,40(4):1030-1037.
[14] 姚 刚,文习山,蓝 磊,等. 变压器油对室温硫化硅橡胶绝缘特性的影响(Ⅰ)[J]. 高电压技术,2011,37(1):91-98. YAO Gang,WEN Xishan,LAN Lei,et al. Effects of transformer oil on insulation performance of RTV silicone rubber(1)[J]. High Voltage Engineering,2011,37(1):91-98.
[15] 贾志东,杨朝翔,王希林,等. 基于憎水迁移性测试的复合绝缘子老化特性[J]. 高电压技术,2015,41(6):1907-1914. JIA Zhidong,YANG Chaoxiang,WANG Xilin,et al. Aging characteristics of composite insulators based on hydrophobicity transfer test[J]. High Voltage Engineering,2015,41(6):1907-1914.
[16] 孙默冉. 丁腈橡胶制品及其助剂在变压器油中热老化机理研究[D]. 沈阳:沈阳工业大学,2013:23-30. SUN Moran. Study of mechanism during thermal ageing in NBR products and rubber additives[D]. Shenyang:Shenyang University,2013:23-30.
[17] 国 江,倪学锋,林 浩,等. 油纸电容式套管故障统计分析及模拟测试研究[J]. 电测与仪表,2014(24):113-119. GUO Jiang,NI Xuefeng,LIN Hao,et al. Research on the statistical analysis and simulation tests of the oil-impregnated paper capacitance graded bushing faults[J]. Electrical Measurement & Instrumentation, 2014(24):113-119.
[18] ±500 kV及以上电压等级直流棒形悬式复合绝缘子技术条件:DL/T 810—2012[S]. 北京:中国电力出版社,2012. Technical specification for long rod composite insulators with a nominal voltage of ±500 kV DC and above:DL/T 810—2012[S]. Beijing:China Electric Power Press.
[19] KATAKI S,HAZARIKA S,BARUAH D C. Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test[J]. Journal of Environmental Management,2017(196):201-216.
[20] 汪佛池,律方成,杨升杰,等. 基于FTIR的110 kV复合绝缘子硅橡胶伞裙老化性能分析[J]. 电工技术学报,2015,30(8):297-303. WANG Fochi,LYU Fangcheng,YANG Shengjie,et al. The aging characteristic of silicon rubber sheds of 110 kV composite insulators based on FTIR test[J]. Transactions of China Electrotechnical Society,2015,30(8):297-303.
[21] 梁 英,郭兴五. 基于FTIR的硅橡胶绝缘材料的老化程度评估[J]. 高压电器,2015,51(8):62-67. LIANG Ying,GUO Xingwu. Aging condition assessment of silicone rubber for composite insulators based on FTIR[J]. High Voltage Apparatus,2015,51(8):62-67.
[22] 佟宇梁. 基于热刺激电流的复合绝缘子老化特性研究[D]. 北京:华北电力大学,2011:44-46. TONG Yuliang. Study on the aging characteristics of composite insulator based on TSC[D]. Beijing: North China Eleetrie Power University,2011:44-46.
[23] 张若兵,苏善诚,姜雨泽,等. 等离子体射流对染污高温硫化硅橡胶憎水特性的影响[J]. 高电压技术,2015,41(1):262-267. ZHANG Ruobing,SU Shancheng,JIANG Yuze,et al. Effect of plasma jet on hydrophobicity of contaminated high temperature vulcanization silicone rubber[J]. High Voltage Engineering,2015,41(1):262-267.
[24] 贾志东,王 也,欧阳小刚,等. 绿藻对高温硫化硅橡胶材料憎水性能的影响[J]. 高电压技术,2017,43(3):885-890. JIA Zhidong,WANG Ye,OUYANG Xiaogang,et al. Influence of green algae on hydrophobic property of HTV silicon rubber[J]. High Voltage Engineering,2017,43(3):885-890.
[25] 姚 刚,文习山,蓝 磊. 室温硫化硅橡胶绝缘纳米复合材料憎水特性分析[J]. 高电压技术,2010,36(8):1928-1935. YAO Gang,WEN Xishan,LAN Lei. Hydrophobic characteristics analysis of RTV-SR insulating nanocomposite[J]. High Voltage Engineering,2010,36(8):1928-1935.
[26] ZHENG Peichao,LIU Keming,WANG Jinmei,et al. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma[J]. Applied Surface Science,2012,259(16):494-500.
[27] 徐志钮,律方成,李 嫚,等. RTV涂层染污后憎水性迁移影响因素的研究[J]. 高压电器,2011,47(4):7-12. XU Zhiniu,LYU Fangcheng,LI Man,et al. Study of influencing factors on polluted RTV coatings hydrophobicity migration[J]. High Voltage Apparatus,2011,47(4):7-12.
[28] 鲁志伟,常树生. 硅橡胶中小分子的高温再生[J]. 高电压技术,2003,29(1):4-5. LU Zhiwei,CHANG Shusheng. The regeneration of LMW in silicone rubber at high temperture[J]. High Voltage Engineering,2003,29(1):4-5.
[29] CRANK J. The mathematics of diffusion[M]. New York:Oxford University Press,1979:44-68.

备注/Memo

备注/Memo:
收稿日期:2019-08-09; 修回日期:2019-10-13基金项目:国家杰出青年基金(51325704);国家电网公司科技项目(GY71-17-051)。Project Supported by National Science Fund for Distinguished Young Scholars(51325704),Science and Technology Project of SGCC(GY71-17-051).黄科宇(1992—),男,助理工程师,主要从事输电线路运行维护、带电检修等工作。
更新日期/Last Update: 2020-02-14