快乐赛车

[1]郑中原,苏 展,路 菲,等.快速自适应边界元方法计算不平坦大地上方高压直流输电线路标称电场[J].高压电器,2020,56(02):34-39.[doi:10.13296/j.1001-1609.hva.2020.02.006 ]
 ZHENG Zhongyuan,SU Zhan,LU Fei,et al.Nominal Field Calculation of HVDC Transmission Lines over an Irregular Terrain by Using Fast Adaptive BEM[J].High Voltage Apparatus,2020,56(02):34-39.[doi:10.13296/j.1001-1609.hva.2020.02.006 ]
点击复制

快速自适应边界元方法计算不平坦大地上方高压直流输电线路标称电场()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年02期
页码:
34-39
栏目:
研究与分析
出版日期:
2020-02-14

文章信息/Info

Title:
Nominal Field Calculation of HVDC Transmission Lines over an Irregular Terrain by Using Fast Adaptive BEM
作者:
郑中原1 苏 展1 路 菲1 金 岩2 刘 彤3 邹 军3
(1. 国网天津市电力公司电力科学研究院, 天津 300384; 2. 国网天津市电力公司检修公司, 天津 300232; 3. 清华大学电机工程与应用电子技术系, 北京 100084)
Author(s):
ZHENG Zhongyuan1 SU Zhan1 LU Fei1 JIN Yan2 LIU Tong3 ZOU Jun3
(1. State Grid Tianjin Electric Power Company Electric Power Research Institute, Tianjin 300384, China; 2. State Grid Tianjin Maintenance Company, Tianjin 300232, China; 3. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)
关键词:
自适应边界元 自适应叉乘近似 直流输电线路 GMRES
Keywords:
adaptive BEM ACA HVDC GMRES
DOI:
摘要:
高压直流输电线路的标称电场计算是其电磁环境分析的基础。考虑输电线路下方不平坦地形影响,文中提出一种快速填充矩阵元素的自适应边界元计算方案,其根据计算结果估计后验误差,从而可自适应的划分边界单元。为避免在自适应计算过程中反复计算矩阵元素,文中采用自适应叉积近似方法加速矩阵元素的填充,降低了计算存储的要求,同时,采用了预条件处理技术,提高了边界元方程组迭代求解器的计算效率。数值算例证明了文中方法的正确性和有效性。文中方法可为分析高压直流输电线路在复杂地形条件的电磁环境奠定基础。
Abstract:
The nominal electric field calculation of HVDC transmission lines is the basis of its electromagnetic environment analysis. Considering the effect of uneven terrain under the transmission line, an adaptive boundary element method with rapidly filling matrix entries is proposed, which estimates the posteriori error based on the calculated results to adaptively mesh the boundary elements. In order to avoid repeatedly calculatingthe matrix elements in the process of adaptive iterations, this paper uses the adaptive cross-product approximation method to accelerate filling matrix elements, which can reduce the requirements of computational storage. Meanwhile, a pre-conditioning technique is utilized to improve the computational efficiency of the iterative solver. Numerical examples prove the correctness and validity of the method proposed in this paper. This method can establish a foundation for analyzing the electromagnetic environment of HVDC transmission lines with complex terrain siutations.

参考文献/References:

[1] QIAO Ji,ZHANG Pengfei,ZHANG Jiangong,et al. An iterative flux tracing method without deutsch assumption for ion-flow field of AC/DC hybrid transmission lines[J]. IEEE Transactions on Magnetics,2018,54(3):1-4.
[2] LIU J,ZOU J,TIAN J H,et al. Analysis of electric field,ion flow density,and corona loss of same-tower double-circuit HVDC lines using improved FEM[J]. IEEE Trans.Power Del.,2009,24(1):482-483.
[3] LI Xin. Numerical analysis of ionized fields associated with HVDC transmissionlines including effect of wind[Z]. Manitoba:The University of Manitoba,1997.
[4] TAKUMA T,IKEDA T,KAWAMOTO T.Calculation of ion flow fields of HVDC transmission lines by the finite element method[J]. IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(12):4802-4810.
[5] 甄永赞,崔 翔,卢铁兵,等. 离子流场中导体充电电位的计算[J]. 中国电机工程学报,2011,31(27):8-13. ZHEN Yongzan,CUI Xiang,LU Tiebing,et al. Calculating charged electric potential of the conductor in lonized Field[J]. Proceedings of the CSEE,2011,31(27):8-13.
[6] HUANG Guodong,RUAN Jiangjun,DU Zhiye,et al. Highly stable upwind FEM for solving ionized field of HVDC transmission line[J]. IEEE Transactions on Magnetics,2012,48(2):719-722.
[7] 杨 扬,陆家榆,杨 勇. 基于上流有限元法的同走廊两回±800 kV直流线路地面合成电场计算[J]. 电网技术,2012,36(4):22-27. YANG Yang,LU Jiayu,YANG Yong. Calculation of total electric field at the ground level under double-circuit ±800 kV DC transmission lines arranged on same corridor with upstream FEM method[J]. Power System Technology,2012,36(4):22-27.
[8] 乔 骥. 交直流并行线路离子流与混合电场计算方法及应用研究[D]. 北京:清华大学,2018. QIAO Ji. Calculation methods for lon flow and electric field of AC/DC hybrid overhead lines and their applications[D]. Beijing:Tsinghua University,2018.
[9] KRAJEWSKI W. BEM analysis fo electric field excited by overhead HV lines erected in built-up areas[J]. IEE Proc. -Sci. Meas. Technol. ,1997,144(2):81-86.
[10] SENDAULS H M,JOHNSON R R,HILSON D W,et al. Electric fields induced by EHV transmission over irregular terrain[J]. IEEE Trans. on Power Apparatus and Systems,1983,PAS-102(5):1452-1457.
[11] 杨小玲,吕建红,唐立军,等. 并行双回特高压直流输电线路地面合成场强计算与试验研究[J]. 高压电器,2015,51(7):46-51. YANG Xiaoling,LYU Jianhong,TANG Lijun,et al. Calculation and test of resultant electric field at the ground level under UHVDC parallel double-circuit transmission line[J]. High Voltage Apparatus,2015,51(7):46-51.
[12] 王小凤,周 浩. ±800 kV特高压直流输电线路的电磁环境研究[J]. 高压电器,2007,43(2):109-112. WANG Xiaofeng,ZHOU Hao. Electromagnetic environmental effect of ±800 kV UHVDC transmission lines[J]. High Voltage Apparatus,2007,43(2):109-112.
[13] 李凌燕,杜志叶,阮江军,等. ±800 kV/±500 kV混压双回直流线路的电磁环境分析及改善研究[J]. 高压电器,2016,52(9):26-33. LI Lingyan,DU Zhiye,RUAN Jiangjun,et al. Electromagnetic environment analysis on ±800 kV/±500 kV double-circuit DC transmission lines[J]. High Voltage Apparatus,2016,52(9):26-33.
[14] 李永明,邹岸新,徐禄文,等. 高压直流输电线路离子流场的计算方法研究[J]. 高压电器,2013,49(8):1-7. LI Yongming,ZOU Anxin,XU Luwen,et al. Calculation of flow field of HVDC transmission lines[J]. High Voltage Apparatus,2013,49(8):1-7.
[15] 李 斌,刘 磊,李 敏,等. ±500 kV同塔双回直流输电线路电磁环境测试分析[J]. 高压电器,2018,54(2):153-157. LI Bin,LIU Lei,LI Min,et al. Measurement and analysis of electromagnetic environment of ±500 kV double-circuit DC transmission lines on the same tower[J]. High Voltage Apparatus,2018,54(2):153-157.
[16] 李永明,陈晓鑫,张淮清,等. 计及地电位升高的HVDC输电线路离子流场的计算[J]. 高压电器,2012,48(1):17-24. LI Yongming,CHEN Xiaoxin,ZHANG Huaiqing,et al. Calculation of lon current field under HVDC transmission line considering ground potential rise[J]. High Voltage Apparatus,2012,48(1):17-24.
[17] 鲁成栋,肖登明,秦松林. 交直流并行输电线路地面混合电场的计算及试验研究[J]. 高压电器,2014,50(1):81-86. LU Chengdong,XIAO Dengming,QIN Songlin. Claculationof hybrid electric field under the paralle AC/DC transmission lines and its experimental research[J]. High Voltage Apparatus,2014,50(1):81-86.
[18] 袁海燕,庄燕飞,姚金霞,等. 导线表面最大场强对直流输电线路电磁环境的影响分析[J]. 高压电器,2013,49(10):7-12. YUAN Haiyan,ZHUANG Yanfei,YAO Jinxia,et al. Iufluence analysis of conductor surface maximum electric field strength on DC transmission line electromagnetic environment[J]. High Voltage Apparatus,2013,49(10):7-12.
[19] BUCHAU A,HUBER C J,HAFLA W,et al. Fast BEM computations with the adaptive multilevel fast multipole method[J]. IEEE Trans. on Magn. ,2000,36(4):680-684.
[20] OSTROWSKI J,ANDJELIC Z,BEBENDORF M,et al. Fast BEM-solution of Laplace problems with H-matrices and ACA[J]. IEEE Transactions on Magnetics,2006,42(4):627-630.
[21] BEFENDORF M,RJASANOV S. Adaptive low-rank approximation of collocation matrices[J]. Computing,2003,70(1):1-24.
[22] ZHAO Z Y. A simple error indicator for adaptive boundary element method[J]. Computers and structures,1998(68):433-443.
[23] JACKSON J D. Classical electrodynamics[M]. New York:Wiley,1962.
[24] KURZ S,RAIN O,RJASANOW S. The adaptive cross-approximation technique for the 3D boundary element method[J]. IEEE Trans. on Magn. ,2002,38(2):421-424.

备注/Memo

备注/Memo:
收稿日期:2019-09-19; 修回日期:2019-11-21郑中原(1987—),男,工程师,研究方向为电网环保技术。苏 展(1986—),男,高级工程师,研究方向为电网绝缘介质检测技术。路 菲(1986—),女,高级工程师,研究方向为电网环保技术。金 岩(1983—),男,工程师,研究方向为电网运行及检修技术。刘 彤(1997—),女,硕士研究生,研究方向为电磁场理论及应用、电力系统电磁兼容。邹 军(1971—),男,教授,研究方向为电磁场理论及应用、电力系统电磁兼容。
更新日期/Last Update: 2020-02-14